Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Metallic nanofoams, cellular structures consisting of interlinked thin nanowires and empty pores, create low density, high surface area materials. These structures can suffer from macroscopically brittle behavior. In this work, we present a multiscale approach to study and explain the mechanical behavior of metallic nanofoams obtained by an electrospinning method. In this multiscale approach, atomistic simulations were first used to obtain the yield surfaces of different metallic nanofoam cell structures. Then, a continuum plasticity model using finite elements was used to predict the alloy nanofoam's overall strength in compression. The manufactured metallic nanofoams were produced by electrospinning a polymeric non-woven fabric containing metal precursors for alloys of copper–nickel and then thermally processing the fabric to create alloy metallic nanofoams. The nanofoams were tested with nanoindentation. The experimental results suggest that the addition of nickel increases the hardening of the nanofoams. The multiscale simulation modeling results agreed qualitatively with the experiments by suggesting that the addition of the alloying can be beneficial to the hardening behavior of the metallic nanofoams and helps to isolate the effects of alloying from morphological changes in the foam. This behavior was related to the addition of solute atoms that prevent the free dislocation movement and increase the strength of the structure.more » « less
-
The mechanical properties of core–shell bimetallic composite nanowires, forming the bases of nanoporous metallic foams, have been investigated and compared with pure metal nanowires using molecular dynamics simulations. In the current study, pure copper and gold nanowires under uniaxial loading were tested at room temperature and compared to composite nanowires of the same materials (core) with a nickel coating (shell). The core radius ranged from 1 to 15 nm, and the shell thickness ranged from 0.1 to 5 nm. The tension strain was performed along the [001] direction under room temperature. Both coherent and semi-coherent composite nanowires were studied, and the effect of coating layer thickness was investigated. The strengthening mechanisms of the core–shell structures due to the presence of the two different types of interfaces were investigated for various nickel thicknesses. The atomistic simulation results revealed that the addition of the nickel shell strengthens the structure when the layer thickness exceeds a critical value.more » « less
-
Pure metallic nanofoams in the form of interconnected networks have shown strong potentials over the past few years in areas such as catalysts, batteries, and plasmonics. However, they are often fragile and difficult to integrate into engineering applications. To better understand their deformation mechanisms, a multiscale approach is required to simulate the mechanical behavior of the nanofoams, although these materials will operate at the macroscale, they will still be maintaining an atomistic ordering. Hence, in this work, we combine molecular dynamics (MD) and finite element analysis (FEA) to study the mechanical behavior of copper (Cu) nanofoams. Molecular dynamics simulations were performed to investigate the yield surface of a representative cell structure. The nanofoam structure has been generated by spinodal decomposition of binary alloy using an atomistic approach. Then, the information obtained from the molecular dynamics simulations in the form of yield function is transferred to the finite element model to study the macroscopic behavior of the Cu nanofoams. The simulated mechanical conduct of Cu nanofoams is in good agreement of the real experiment results.more » « less
An official website of the United States government
